On Hamiltonian continuum mechanics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10418442" target="_blank" >RIV/00216208:11320/20:10418442 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/20:00341592
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kE0b.SFOEN" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kE0b.SFOEN</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2020.132510" target="_blank" >10.1016/j.physd.2020.132510</a>
Alternative languages
Result language
angličtina
Original language name
On Hamiltonian continuum mechanics
Original language description
Continuum mechanics can be formulated in the Lagrangian frame (addressing motion of individual continuum particles) or in the Eulerian frame (addressing evolution of fields in an inertial frame). There is a canonical Hamiltonian structure in the Lagrangian frame. By transformation to the Eulerian frame we find the Poisson bracket for Eulerian continuum mechanics with deformation gradient (or the related distortion matrix). Both Lagrangian and Eulerian Hamiltonian structures are then discussed from the perspective of space-time variational formulation and by means of semidirect products and Lie algebras. Finally, we discuss the importance of the Jacobi identity in continuum mechanics and approaches to prove hyperbolicity of the evolution equations and their gauge invariance. (C) 2020 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GJ17-15498Y" target="_blank" >GJ17-15498Y: Multiscale Nonequilibrium Thermodynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physica D: Nonlinear Phenomena
ISSN
0167-2789
e-ISSN
—
Volume of the periodical
408
Issue of the periodical within the volume
July
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
19
Pages from-to
132510
UT code for WoS article
000535888500002
EID of the result in the Scopus database
—