All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

JSON Schema Inference Approaches

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10418922" target="_blank" >RIV/00216208:11320/20:10418922 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-65847-2_16" target="_blank" >https://doi.org/10.1007/978-3-030-65847-2_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-65847-2_16" target="_blank" >10.1007/978-3-030-65847-2_16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    JSON Schema Inference Approaches

  • Original language description

    Since the traditional relational database systems are not capable of following the contemporary requirements on Big Data processing, a family of NoSQL databases emerged. It is not an exception for such systems not to require an explicit schema for the data they store. Nevertheless, application developers must maintain at least the so-called implicit schema. In certain situations, however, the presence of an explicit schema is still necessary, and so it makes sense to propose methods capable of schema inference just from the structure of the available data. In the context of document NoSQL databases, namely those assuming the JSON data format, we focus on several representatives of the existing inference approaches and provide their thorough comparison. Although they are often based on similar principles, their features, support for the detection of references, union types, or required and optional properties differ greatly. We believe that without adequately tackling their disadvantages we identified, uniform schema inference and modeling of the multi-model data simply cannot be pursued straightforwardly.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA20-22276S" target="_blank" >GA20-22276S: Unified Management of Multi-Model Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Conceptual Modeling

  • ISBN

    978-3-030-65846-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    173-183

  • Publisher name

    Springer International Publishing

  • Place of publication

    Austria

  • Event location

    Vienna, Austria

  • Event date

    Nov 3, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000604160100016