All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Second order stochastic dominance constraints in decision dependent randomness portfolio optimization problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419091" target="_blank" >RIV/00216208:11320/20:10419091 - isvavai.cz</a>

  • Result on the web

    <a href="https://mme2019.ef.jcu.cz/files/conference_proceedings.pdf" target="_blank" >https://mme2019.ef.jcu.cz/files/conference_proceedings.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Second order stochastic dominance constraints in decision dependent randomness portfolio optimization problems

  • Original language description

    The paper deals with stochastic portfolio optimization problems which maximize a given functional under second - order stochastic dominance constraints in presence of endogenous randomness. Endogenous randomness (or decision dependent randomness) means that the probability distribution of asset returns may depend on the decision variables, i.e. on the weights associated to the assets. This may occur typically in the high frequency trading or in the illiquid markets, when a massive investment of one investor may attract others investors, at least for a small time period. Firstly, we modify the classical second-order stochastic dominance relation between returns of two given portfolios for the case with endogenous randomness of returns. Secondly, we apply this new constraint to the portfolio optimization problem. Finally, we present an example demonstrating the differences in optimal portfolios when endogenous randomness is omitted (exogenous randomness is assumed).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA18-05631S" target="_blank" >GA18-05631S: Stochastic optimization problems with endogenous uncertainty</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    37TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2019

  • ISBN

    978-80-7394-760-6

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    251-256

  • Publisher name

    UNIV SOUTH BOHEMIA CESKE BUDEJOVIC, FAC ECONOMICS

  • Place of publication

    CESKE BUDEJOVICE

  • Event location

    Ceske Budejovice

  • Event date

    Sep 11, 2019

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000507570400041