All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Least squares K-SVCR multi-class classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419277" target="_blank" >RIV/00216208:11320/20:10419277 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-53552-0_13" target="_blank" >https://doi.org/10.1007/978-3-030-53552-0_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-53552-0_13" target="_blank" >10.1007/978-3-030-53552-0_13</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Least squares K-SVCR multi-class classification

  • Original language description

    The support vector classification-regression machine for K-class classification (K-SVCR) is a novel multi-class classification method based on 1-versus-1-versus-rest structure. In this paper, we propose a least squares version of K-SVCR named as LSK-SVCR. Similarly as the K-SVCR algorithm, this method assess all the training data into a 1-versus-1-versus-rest structure, so that the algorithm generates ternary output -1,0,+1. In LSK-SVCR, the solution of the primal problem is computed by solving only one system of linear equations instead of solving the dual problem, which is a convex quadratic programming problem in K-SVCR. Experimental results on several benchmark data set show that the LSK-SVCR has better performance in the aspects of predictive accuracy and learning speed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

    <a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Learning and Intelligent Optimization

  • ISBN

    978-3-030-53552-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    117-127

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Athens

  • Event date

    May 24, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article