Redundancy in interval linear systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419315" target="_blank" >RIV/00216208:11320/20:10419315 - isvavai.cz</a>
Result on the web
<a href="https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final_final.pdf" target="_blank" >https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final_final.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Redundancy in interval linear systems
Original language description
In a system of linear equations and inequalities, one constraint is redundant if it can be dropped from the system without affecting the solution set. Redundancy can be effectively checked by linear programming. However, if the coefficients are uncertain, the problem becomes more cumbersome. In this paper, we assume that the coefficients come from some given compact intervals and no other information is given. We discuss two concepts of redundancy in this interval case, the weak and the strong redundancy. This former refers to redundancy for at least one realization of interval coefficients, while the latter means redundancy for every realization. We characterize both kinds of redundancies for various types of linear systems; in some cases the problem is polynomial, but certain cases are computationally intractable. As an open problem, we leave weak redundancy of equations. Herein, a characterization is known only for certain special cases, but for a general case a complete characterization is still unknown.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50201 - Economic Theory
Result continuities
Project
<a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
38th International Conference on Mathematical Methods in Economics 2020 (MME 2020). Conference Proceedings
ISBN
978-80-7509-734-7
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
160-165
Publisher name
Mendel University in Brno
Place of publication
Brno
Event location
Brno
Event date
Sep 9, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—