Interval transportation problem: The best and the worst (feasible) scenario
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419318" target="_blank" >RIV/00216208:11320/20:10419318 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31110/20:00056133 RIV/61384399:31140/20:00056133
Result on the web
<a href="https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final_final.pdf" target="_blank" >https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final_final.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Interval transportation problem: The best and the worst (feasible) scenario
Original language description
Interval programming presents a powerful mathematical tool for modeling optimization problems affected by uncertainty. We consider an interval linear programming model for the transportation problem with uncertain supply and demand varying within a priori known bounds. We address the problem of computing the optimal value range of an interval transportation problem, i.e. finding the best and the worst possible optimal value, and describing the corresponding scenarios of the problem. Since the worst-case scenario in the traditional sense is often infeasible, thus leading to an infinite bound of the optimal value range, we consider the worst finite optimal value of the problem. We propose a decomposition method based on complementarity for computing the worst finite optimal value exactly. We also study the corresponding best and worst extremal scenarios for which the bounds of the finite optimal value range are attained. Moreover, we derive a description of the structure of the linear program corresponding to the best scenario.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50201 - Economic Theory
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
38th International Conference on Mathematical Methods in Economics 2020 (MME 2020). Conference Proceedings
ISBN
978-80-7509-734-7
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
122-127
Publisher name
Mendel University in Brno
Place of publication
Brno
Event location
Brno
Event date
Sep 9, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—