All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Interval transportation problem: The best and the worst (feasible) scenario

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419318" target="_blank" >RIV/00216208:11320/20:10419318 - isvavai.cz</a>

  • Alternative codes found

    RIV/61384399:31110/20:00056133 RIV/61384399:31140/20:00056133

  • Result on the web

    <a href="https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final_final.pdf" target="_blank" >https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final_final.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Interval transportation problem: The best and the worst (feasible) scenario

  • Original language description

    Interval programming presents a powerful mathematical tool for modeling optimization problems affected by uncertainty. We consider an interval linear programming model for the transportation problem with uncertain supply and demand varying within a priori known bounds. We address the problem of computing the optimal value range of an interval transportation problem, i.e. finding the best and the worst possible optimal value, and describing the corresponding scenarios of the problem. Since the worst-case scenario in the traditional sense is often infeasible, thus leading to an infinite bound of the optimal value range, we consider the worst finite optimal value of the problem. We propose a decomposition method based on complementarity for computing the worst finite optimal value exactly. We also study the corresponding best and worst extremal scenarios for which the bounds of the finite optimal value range are attained. Moreover, we derive a description of the structure of the linear program corresponding to the best scenario.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    38th International Conference on Mathematical Methods in Economics 2020 (MME 2020). Conference Proceedings

  • ISBN

    978-80-7509-734-7

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    122-127

  • Publisher name

    Mendel University in Brno

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Sep 9, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article