All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rainbow cycles in flip graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419957" target="_blank" >RIV/00216208:11320/20:10419957 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=noYFAmtzud" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=noYFAmtzud</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/18M1216456" target="_blank" >10.1137/18M1216456</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rainbow cycles in flip graphs

  • Original language description

    The flip graph of triangulations has as vertices all triangulations of a convex n-gon and an edge between any two triangulations that differ in exactly one edge. An r-rainbow cycle in this graph is a cycle in which every inner edge of the triangulation appears exactly r times. This notion of a rainbow cycle extends in a natural way to other flip graphs. In this paper we investigate the existence of r-rainbow cycles for three different flip graphs on classes of geometric objects: the aforementioned flip graph of triangulations of a convex n-gon, the flip graph of plane trees on an arbitrary set of n points, and the flip graph of noncrossing perfect matchings on a set of n points in convex position. In addition, we consider two flip graphs on classes of nongeometric objects: the flip graph of permutations of {1, 2, ..., n} and the flip graph of k-element subsets of {1, 2, ..., n}. In each of the five settings, we prove the existence and nonexistence of rainbow cycles for different values of r, n, and k.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    39

  • Pages from-to

    1-39

  • UT code for WoS article

    000546886700001

  • EID of the result in the Scopus database

    2-s2.0-85079770225