A variety of Steiner loops satisfying Moufang's theorem: a solution to Rajah's Problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420782" target="_blank" >RIV/00216208:11320/20:10420782 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e.q.hn5YVO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e.q.hn5YVO</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00010-019-00692-3" target="_blank" >10.1007/s00010-019-00692-3</a>
Alternative languages
Result language
angličtina
Original language name
A variety of Steiner loops satisfying Moufang's theorem: a solution to Rajah's Problem
Original language description
A loop X is said to satisfy Moufang's theorem if for every x,y,z in X such that x(yz)=(xy)z the subloop generated by x,y,z is a group. We prove that the variety V of Steiner loops satisfying the identity (xz)(((xy)z)(yz))=((xz)((xy)z))(yz) is not contained in the variety of Moufang loops, yet every loop in V satisfies Moufang's theorem. This solves a problem posed by Andrew Rajah.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Aequationes Mathematicae
ISSN
0001-9054
e-ISSN
—
Volume of the periodical
94
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
5
Pages from-to
97-101
UT code for WoS article
000519348300006
EID of the result in the Scopus database
2-s2.0-85075439032