All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A variety of Steiner loops satisfying Moufang's theorem: a solution to Rajah's Problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420782" target="_blank" >RIV/00216208:11320/20:10420782 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e.q.hn5YVO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e.q.hn5YVO</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00010-019-00692-3" target="_blank" >10.1007/s00010-019-00692-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A variety of Steiner loops satisfying Moufang's theorem: a solution to Rajah's Problem

  • Original language description

    A loop X is said to satisfy Moufang&apos;s theorem if for every x,y,z in X such that x(yz)=(xy)z the subloop generated by x,y,z is a group. We prove that the variety V of Steiner loops satisfying the identity (xz)(((xy)z)(yz))=((xz)((xy)z))(yz) is not contained in the variety of Moufang loops, yet every loop in V satisfies Moufang&apos;s theorem. This solves a problem posed by Andrew Rajah.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Aequationes Mathematicae

  • ISSN

    0001-9054

  • e-ISSN

  • Volume of the periodical

    94

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    5

  • Pages from-to

    97-101

  • UT code for WoS article

    000519348300006

  • EID of the result in the Scopus database

    2-s2.0-85075439032