All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DIVISION SUDOKUS: INVARIANTS, ENUMERATION, AND MULTIPLE PARTITIONS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420785" target="_blank" >RIV/00216208:11320/20:10420785 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3zD-Fl9c8o" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3zD-Fl9c8o</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0017089519000375" target="_blank" >10.1017/S0017089519000375</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DIVISION SUDOKUS: INVARIANTS, ENUMERATION, AND MULTIPLE PARTITIONS

  • Original language description

    A division sudoku is a latin square whose all six conjugates are sudoku squares. We enumerate division sudokus up to a suitable equivalence, introduce powerful invariants of division sudokus, and also study latin squares that are division sudokus with respect to multiple partitions at the same time. We use nearfields and affine geometry to construct division sudokus of prime power rank that are rich in sudoku partitions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Glasgow Mathematical Journal

  • ISSN

    0017-0895

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    62

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    31

  • Pages from-to

    600-630

  • UT code for WoS article

    000557836600007

  • EID of the result in the Scopus database

    2-s2.0-85074935476