All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamics of Titan's high-pressure ice layer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421103" target="_blank" >RIV/00216208:11320/20:10421103 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VorSG.3vIU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VorSG.3vIU</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.epsl.2020.116416" target="_blank" >10.1016/j.epsl.2020.116416</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamics of Titan's high-pressure ice layer

  • Original language description

    The presence of Ar-40 in Titan&apos;s atmosphere and the replenishment of methane argue for the exchange between the interior and the atmosphere. These observations triggered the present study that aims to determine the conditions under which the high-pressure (HP) ice layer, likely present between the deep ocean and the silicate core, poses a barrier for the exchange of volatiles. We model heat and water transport through this convecting HP ice layer using a two-phase numerical model of solid ice-liquid water mixture. We observe that for a large range of heat fluxes from the silicate core and HP ice layer thicknesses, a few percent of liquid water forms at the interface with the silicates. Liquid water being less dense than the HP ice, it creates additional buoyancy, thus facilitating the transport of volatiles towards the ocean. Our results also show that convection is characterized by the presence of hot and the absence of cold plumes. We derive a scaling law that describes the dependence of a critical heat flux for the onset of melting at the silicates interface on the thickness of the HP ice layer and the ice viscosity. We also study the processes at the interface with the base of the ocean where a few tens of kilometers thick layer of temperate (partially molten) ice is present. We find a scaling law for its thickness that depends mainly on the ice viscosity and the density difference between the ice and water. Water from this partially molten, temperate layer flows into the ocean thus completing the connection with the silicate core. The water flux depends primarily on the amount of heat supplied from the silicates. Future evolution models that will use the scaling laws derived in this study will place bounds on the timing of these exchange processes. Using Cassini data and reasonable values of HP ice viscosity and silicate heat flux, we predict melting at the silicates/HP ice interface at present time. (C) 2020 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

    <a href="/en/project/GA19-10809S" target="_blank" >GA19-10809S: Thermomechanical processes in icy moons - insight from numerical modeling</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Earth and Planetary Science Letters

  • ISSN

    0012-821X

  • e-ISSN

  • Volume of the periodical

    545

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    116416

  • UT code for WoS article

    000549183200014

  • EID of the result in the Scopus database

    2-s2.0-85086857887