All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Random Phase Approximation Applied to Many-Body Noncovalent Systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421411" target="_blank" >RIV/00216208:11320/20:10421411 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1h.YqPLYv8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1h.YqPLYv8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.9b00979" target="_blank" >10.1021/acs.jctc.9b00979</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Random Phase Approximation Applied to Many-Body Noncovalent Systems

  • Original language description

    The random phase approximation (RPA) has received considerable interest in the field of modeling systems where noncovalent interactions are important. Its advantages over widely used density functional theory (DFT) approximations are the exact treatment of exchange and the description of long-range correlation. In this work, we address two open questions related to RPA. First, we demonstrate how accurately RPA describes nonadditive interactions encountered in many-body expansion of a binding energy. We consider three body nonadditive energies in molecular and atomic clusters. Second, we address how the accuracy of RPA depends on input provided by different DFT models, without resorting to self-consistent RPA procedure, which is currently impractical for calculations employing periodic boundary conditions. We find that RPA based on the SCAN0 and PBE0 models, that is, hybrid DFT, achieves an overall accuracy between CCSD and MP3 on a data set of molecular trimers from Rezac et al. (J. Chem. Theory. Comput. 2015, 11, 3065). Finally, many-body expansion for molecular clusters and solids often leads to a large number of small contributions that need to be calculated with high precision. We therefore present a cubic-scaling (or self-consistent field (SCF)-like) implementation of RPA in atomic basis set, which is designed for calculations with high numerical precision.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    427-442

  • UT code for WoS article

    000508474800033

  • EID of the result in the Scopus database

    2-s2.0-85076239480