Random Phase Approximation Applied to Many-Body Noncovalent Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421411" target="_blank" >RIV/00216208:11320/20:10421411 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1h.YqPLYv8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1h.YqPLYv8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.9b00979" target="_blank" >10.1021/acs.jctc.9b00979</a>
Alternative languages
Result language
angličtina
Original language name
Random Phase Approximation Applied to Many-Body Noncovalent Systems
Original language description
The random phase approximation (RPA) has received considerable interest in the field of modeling systems where noncovalent interactions are important. Its advantages over widely used density functional theory (DFT) approximations are the exact treatment of exchange and the description of long-range correlation. In this work, we address two open questions related to RPA. First, we demonstrate how accurately RPA describes nonadditive interactions encountered in many-body expansion of a binding energy. We consider three body nonadditive energies in molecular and atomic clusters. Second, we address how the accuracy of RPA depends on input provided by different DFT models, without resorting to self-consistent RPA procedure, which is currently impractical for calculations employing periodic boundary conditions. We find that RPA based on the SCAN0 and PBE0 models, that is, hybrid DFT, achieves an overall accuracy between CCSD and MP3 on a data set of molecular trimers from Rezac et al. (J. Chem. Theory. Comput. 2015, 11, 3065). Finally, many-body expansion for molecular clusters and solids often leads to a large number of small contributions that need to be calculated with high precision. We therefore present a cubic-scaling (or self-consistent field (SCF)-like) implementation of RPA in atomic basis set, which is designed for calculations with high numerical precision.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
427-442
UT code for WoS article
000508474800033
EID of the result in the Scopus database
2-s2.0-85076239480