All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Photoprotection of photosynthetic pigments in plant one-helix protein 1/2 heterodimers.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421532" target="_blank" >RIV/00216208:11320/20:10421532 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qZ_0LVere_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qZ_0LVere_</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpclett.0c02660" target="_blank" >10.1021/acs.jpclett.0c02660</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Photoprotection of photosynthetic pigments in plant one-helix protein 1/2 heterodimers.

  • Original language description

    One-helix proteins 1 and 2 (OHP1/2) are members of the family of light-harvesting-like proteins (LIL) in plants, and their potential function(s) have been initially analyzed only recently. OHP1 and OHP2 are structurally related to the transmembrane α-helices 1 and 3 of all members of the light-harvesting complex (LHC) superfamily. Arabidopsis thaliana OHPs form heterodimers which bind 6 chlorophylls (Chls) a and two carotenoids in vitro. Their function remains unclear, and therefore, a spectroscopic study with reconstituted OHP1/OHP2-complexes was performed. Steady-state spectroscopy did not indicate singlet excitation energy transfer between pigments. Thus, a light-harvesting function can be excluded. Possible pigment-storage and/or -delivery functions of OHPs require photoprotection of the bound Chls. Hence, Chl and carotenoid triplet formation and decays in reconstituted OHP1/2 dimers were measured using nanosecond transient absorption spectroscopy. Unlike in all other photosynthetic LHCs, unquenched Chl triplets were observed with unusually long lifetimes. Moreover, there were virtually no differences in both Chl and carotenoid triplet state lifetimes under either aerobic or anaerobic conditions. The results indicate that both Chls and carotenoids are shielded by the proteins from interactions with ambient oxygen and, thus, protected against formation of singlet oxygen. Only a minor portion of the Chl triplets was quenched by carotenoids. These results are in stark contrast to all previously observed photoprotective processes in LHC/LIL proteins and, thus, may constitute a novel mechanism of photoprotection in the plant photosynthetic apparatus.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    <a href="/en/project/GA20-01159S" target="_blank" >GA20-01159S: Interactions between pigments for efficient light harvesting and photoprotection in photosynthesis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry Letters

  • ISSN

    1948-7185

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    21

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    9387-9392

  • UT code for WoS article

    000589920000066

  • EID of the result in the Scopus database

    2-s2.0-85095799967