All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

BLOCK KRYLOV SUBSPACE METHODS FOR FUNCTIONS OF MATRICES II: MODIFIED BLOCK FOM

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421684" target="_blank" >RIV/00216208:11320/20:10421684 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y6iV5on2qh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y6iV5on2qh</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/19M1255847" target="_blank" >10.1137/19M1255847</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    BLOCK KRYLOV SUBSPACE METHODS FOR FUNCTIONS OF MATRICES II: MODIFIED BLOCK FOM

  • Original language description

    We analyze an expansion of the generalized block Krylov subspace framework of [Electron. Trans. Nurser. Anal., 47 (2017), pp. 100-126]. This expansion allows the use of low-rank modifications of the matrix projected onto the block Krylov subspace and contains, as special cases, the block GMRES method and the new block Radau-Arnoldi method. Within this general setting, we present results that extend the interpolation property from the nonblock case to a matrix polynomial interpolation property for the block case, and we relate the eigenvalues of the projected matrix to the latent roots of these matrix polynomials. Some error bounds for these modified block FOM methods for solving linear systems are presented. We then show how cospatial residuals can be preserved in the case of families of shifted linear block systems. This result is used to derive computationally practical restarted algorithms for block Krylov approximations that compute the action of a matrix function on a set of several vectors simultaneously. We prove some error bounds and present numerical results showing that two modifications of FOM, the block harmonic and the block Radau-Arnoldi methods for matrix functions, can significantly improve the convergence behavior.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Volume of the periodical

    41

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    34

  • Pages from-to

    804-837

  • UT code for WoS article

    000546981500017

  • EID of the result in the Scopus database

    2-s2.0-85090409673