Positive quantum Lyapunov exponents in experimental systems with a regular classical limit
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421688" target="_blank" >RIV/00216208:11320/20:10421688 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I5wJdHDbNE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I5wJdHDbNE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.101.010202" target="_blank" >10.1103/PhysRevE.101.010202</a>
Alternative languages
Result language
angličtina
Original language name
Positive quantum Lyapunov exponents in experimental systems with a regular classical limit
Original language description
Quantum chaos refers to signatures of classical chaos found in the quantum domain. Recently, it has become common to equate the exponential behavior of out-of-time order correlators (OTOCs) with quantum chaos. The quantum-classical correspondence between the OTOC exponential growth and chaos in the classical limit has indeed been corroborated theoretically for some systems and there are several projects to do the same experimentally. The Dicke model, in particular, which has a regular and a chaotic regime, is currently under intense investigation by experiments with trapped ions. We show, however, that for experimentally accessible parameters, OTOCs can grow exponentially also when the Dicke model is in the regular regime. The same holds for the Lipkin-Meshkov-Glick model, which is integrable and also experimentally realizable. The exponential behavior in these cases are due to unstable stationary points, not to chaos.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review E
ISSN
2470-0045
e-ISSN
—
Volume of the periodical
101
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
010202
UT code for WoS article
000509501100001
EID of the result in the Scopus database
2-s2.0-85078824702