Boundedness of classical operators on rearrangement-invariant spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421885" target="_blank" >RIV/00216208:11320/20:10421885 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H_5_VQ13zS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H_5_VQ13zS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2019.108341" target="_blank" >10.1016/j.jfa.2019.108341</a>
Alternative languages
Result language
angličtina
Original language name
Boundedness of classical operators on rearrangement-invariant spaces
Original language description
We study the behaviour on rearrangement-invariant (r.i.) spaces of such classical operators of interest in harmonic analysis as the Hardy-Littlewood maximal operator (including the fractional version), the Hilbert and Stieltjes transforms, and the Riesz potential. The focus is on sharpness questions, and we present characterisations of the optimal domain (or range) partner spaces when the range (domain) is fixed. When an r.i. partner space exists at all, a complete characterisation of the situation is given. We illustrate the results with a variety of examples of sharp particular results involving customary function spaces. (C) 2019 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
278
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
56
Pages from-to
108341
UT code for WoS article
000507143300003
EID of the result in the Scopus database
2-s2.0-85075372906