All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Boundedness of classical operators on rearrangement-invariant spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421885" target="_blank" >RIV/00216208:11320/20:10421885 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H_5_VQ13zS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H_5_VQ13zS</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2019.108341" target="_blank" >10.1016/j.jfa.2019.108341</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Boundedness of classical operators on rearrangement-invariant spaces

  • Original language description

    We study the behaviour on rearrangement-invariant (r.i.) spaces of such classical operators of interest in harmonic analysis as the Hardy-Littlewood maximal operator (including the fractional version), the Hilbert and Stieltjes transforms, and the Riesz potential. The focus is on sharpness questions, and we present characterisations of the optimal domain (or range) partner spaces when the range (domain) is fixed. When an r.i. partner space exists at all, a complete characterisation of the situation is given. We illustrate the results with a variety of examples of sharp particular results involving customary function spaces. (C) 2019 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

  • Volume of the periodical

    278

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    56

  • Pages from-to

    108341

  • UT code for WoS article

    000507143300003

  • EID of the result in the Scopus database

    2-s2.0-85075372906