New Soft Theorems for Goldstone-Boson Amplitudes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421975" target="_blank" >RIV/00216208:11320/20:10421975 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rn.f0BM-dC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rn.f0BM-dC</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevLett.124.111601" target="_blank" >10.1103/PhysRevLett.124.111601</a>
Alternative languages
Result language
angličtina
Original language name
New Soft Theorems for Goldstone-Boson Amplitudes
Original language description
In this Letter we discuss new soft theorems for the Goldstone-boson amplitudes with nonvanishing soft limits. The standard argument is that the nonlinearly realized shift symmetry leads to the vanishing of scattering amplitudes in the soft limit, known as the Adler zero. This statement involves certain assumptions of the absence of cubic vertices and the absence of linear terms in the transformations of fields. For theories which fail to satisfy these conditions, we derive a new soft theorem which involves certain linear combinations of lower point amplitudes, generalizing the Adler zero statement. We provide an explicit example of the SU(N)/SU(N - 1) sigma model which was also recently studied in the context of U(1) fibrated models. The soft theorem can be then used as an input into the modified soft recursion relations for the reconstruction of all tree-level amplitudes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review Letters
ISSN
0031-9007
e-ISSN
—
Volume of the periodical
124
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
111601
UT code for WoS article
000519995000003
EID of the result in the Scopus database
2-s2.0-85083041158