All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Limited-memory polynomial methods for large-scale matrix functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421991" target="_blank" >RIV/00216208:11320/20:10421991 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9rihyDmNxW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9rihyDmNxW</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/gamm.202000019" target="_blank" >10.1002/gamm.202000019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Limited-memory polynomial methods for large-scale matrix functions

  • Original language description

    Matrix functions are a central topic of linear algebra, and problems requiring their numerical approximation appear increasingly often in scientific computing. We review various limited-memory methods for the approximation of the action of a large-scale matrix function on a vector. Emphasis is put on polynomial methods, whose memory requirements are known or prescribed a priori. Methods based on explicit polynomial approximation or interpolation, as well as restarted Arnoldi methods, are treated in detail. An overview of existing software is also given, as well as a discussion of challenging open problems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    GAMM Mitteilungen

  • ISSN

    0936-7195

  • e-ISSN

  • Volume of the periodical

    43

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    19

  • Pages from-to

    e202000019

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85090414601