Limited-memory polynomial methods for large-scale matrix functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421991" target="_blank" >RIV/00216208:11320/20:10421991 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9rihyDmNxW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9rihyDmNxW</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/gamm.202000019" target="_blank" >10.1002/gamm.202000019</a>
Alternative languages
Result language
angličtina
Original language name
Limited-memory polynomial methods for large-scale matrix functions
Original language description
Matrix functions are a central topic of linear algebra, and problems requiring their numerical approximation appear increasingly often in scientific computing. We review various limited-memory methods for the approximation of the action of a large-scale matrix function on a vector. Emphasis is put on polynomial methods, whose memory requirements are known or prescribed a priori. Methods based on explicit polynomial approximation or interpolation, as well as restarted Arnoldi methods, are treated in detail. An overview of existing software is also given, as well as a discussion of challenging open problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
GAMM Mitteilungen
ISSN
0936-7195
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
e202000019
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85090414601