All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for Integer Programming

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421994" target="_blank" >RIV/00216208:11320/20:10421994 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.ICALP.2020.26" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2020.26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.26" target="_blank" >10.4230/LIPIcs.ICALP.2020.26</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for Integer Programming

  • Original language description

    A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with tree-depth d and largest entry Δ are solvable in time g(d,Δ) poly(n) for some function g, i.e., fixed parameter tractable when parameterized by tree-depth d and Δ. However, the tree-depth of a constraint matrix depends on the positions of its non-zero entries and thus does not reflect its geometric structure. In particular, tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth. We prove that the branch-depth of the matroid defined by the columns of the constraint matrix is equal to the minimum tree-depth of a row-equivalent matrix. We also design a fixed parameter algorithm parameterized by an integer d and the entry complexity of an input matrix that either outputs a matrix with the smallest dual tree-depth that is row-equivalent to the input matrix or outputs that there is no matrix with dual tree-depth at most d that is row-equivalent to the input matrix. Finally, we use these results to obtain a fixed parameter algorithm for integer programming parameterized by the branch-depth of the input constraint matrix and the entry complexity. The parameterization by branch-depth cannot be replaced by the more permissive notion of branch-width.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-138-2

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    19

  • Pages from-to

    1-19

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Saarbrücken

  • Event date

    Jul 8, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article