Optimal local embeddings of Besov spaces involving only slowly varying smoothness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422010" target="_blank" >RIV/00216208:11320/20:10422010 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x2R9R_0Xmq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x2R9R_0Xmq</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jat.2020.105393" target="_blank" >10.1016/j.jat.2020.105393</a>
Alternative languages
Result language
angličtina
Original language name
Optimal local embeddings of Besov spaces involving only slowly varying smoothness
Original language description
The aim of the paper is to establish (local) optimal embeddings of Besov spaces B-p,r(0,b) involving only a slowly varying smoothness b. In general, our target spaces are outside of the scale of Lorentz-Karamata spaces. In particular, we improve results from Caetano et al. (2011), where the targets are (local) Lorentz-Karamata spaces. To derive such results, we apply limiting real interpolation techniques and weighted Hardy-type inequalities. (C) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Approximation Theory
ISSN
0021-9045
e-ISSN
—
Volume of the periodical
254
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
105393
UT code for WoS article
000523632600004
EID of the result in the Scopus database
2-s2.0-85081700728