A Version of the Stokes Theorem Using Test Curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422018" target="_blank" >RIV/00216208:11320/20:10422018 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uRWuuIkaMP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uRWuuIkaMP</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1512/iumj.2020.69.8389" target="_blank" >10.1512/iumj.2020.69.8389</a>
Alternative languages
Result language
angličtina
Original language name
A Version of the Stokes Theorem Using Test Curves
Original language description
We prove that a parametric Lipschitz surface of codimension 1 in a smooth manifold induces a boundary in the sense of currents (roughly speaking, surrounds a "domain" with an eventual multiplicity and together with it forms a pair for the Stokes theorem) if and only if it passes a test in terms of crossing the surface by "almost all" curves. We use the AM-modulus recently introduced in [22] to measure the exceptional family of curves.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-07996S" target="_blank" >GA18-07996S: Geometric and Harmonic Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Indiana University Mathematics Journal
ISSN
0022-2518
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
295-330
UT code for WoS article
000517972900013
EID of the result in the Scopus database
2-s2.0-85084504160