Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422397" target="_blank" >RIV/00216208:11320/20:10422397 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qdioxgI.q2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qdioxgI.q2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103433" target="_blank" >10.1016/j.ijnonlinmec.2020.103433</a>
Alternative languages
Result language
angličtina
Original language name
Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids
Original language description
We derive a representation formula for a class of solids described by implicit constitutive relations between the Cauchy stress tensor and the Hencky strain tensor. Using a thermodynamic framework, we show that the Hencky strain tensor can be obtained as the derivative of the specific Gibbs free energy with respect to a stress tensor related to the Cauchy stress tensor. Unlike previous studies that have considered implicit relations between the Cauchy stress tensor and the Hencky strain we work with quantities that allow us to split the deformation into two parts. One part is connected to deformations that change the volume and the other to deformations where volume is preserved. Such a decomposition allows us to clearly characterise the interplay between the corresponding parts of the stress tensor, and to identify additional restrictions regarding the admissible formulae for the Gibbs free energy. We also show that if the constitutive relations of this type are linearised under the small strain assumption, then one can transparently obtain linearised models with density/pressure/stress dependent elastic moduli in a natural manner.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamical and mathematical analysis of flows of complex fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Non-Linear Mechanics
ISSN
0020-7462
e-ISSN
—
Volume of the periodical
121
Issue of the periodical within the volume
May
Country of publishing house
GB - UNITED KINGDOM
Number of pages
7
Pages from-to
103433
UT code for WoS article
000527346800009
EID of the result in the Scopus database
2-s2.0-85078851208