On the clique-width of (4K(1), C-4, C-5, C-7)-free graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422403" target="_blank" >RIV/00216208:11320/20:10422403 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BTHGipTvZg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BTHGipTvZg</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2020.07.009" target="_blank" >10.1016/j.dam.2020.07.009</a>
Alternative languages
Result language
angličtina
Original language name
On the clique-width of (4K(1), C-4, C-5, C-7)-free graphs
Original language description
We prove that (4K(1), C-4, C-5, C-7)-free graphs that are not chordal have unbounded clique-width. This disproves a conjecture from Fraser et al. (2017). (C) 2020 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Volume of the periodical
285
Issue of the periodical within the volume
15.10.2020
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
3
Pages from-to
688-690
UT code for WoS article
000563784700065
EID of the result in the Scopus database
2-s2.0-85088223332