All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the limit as s -> 1- of possibly non-separable fractional Orlicz-Sobolev spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422541" target="_blank" >RIV/00216208:11320/20:10422541 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uz--jo5ec1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uz--jo5ec1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/RLM/918" target="_blank" >10.4171/RLM/918</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the limit as s -> 1- of possibly non-separable fractional Orlicz-Sobolev spaces

  • Original language description

    Extended versions of the Bourgain-Brezis-Mironescu theorems on the limit as s ! 1 of the Gagliardo-Slobodeckij fractional seminorm are established in the Orlicz space setting. Our results hold for fractional Orlicz-Sobolev spaces built upon general Young functions, and complement those of [13].

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Rendiconti Lincei-Matematica e Applicazioni [online]

  • ISSN

    1720-0768

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IT - ITALY

  • Number of pages

    21

  • Pages from-to

    879-899

  • UT code for WoS article

    000619775800010

  • EID of the result in the Scopus database