All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exact description of excitonic dynamics in molecular aggregates weakly driven by light

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422754" target="_blank" >RIV/00216208:11320/20:10422754 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FNHiksvBpG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FNHiksvBpG</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0029914" target="_blank" >10.1063/5.0029914</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exact description of excitonic dynamics in molecular aggregates weakly driven by light

  • Original language description

    We present a rigorous theoretical description of excitonic dynamics in molecular light-harvesting aggregates photoexcited by weak-intensity radiation of arbitrary properties. While the interaction with light is included up to the second order, the treatment of the excitation-environment coupling is exact and results in an exact expression for the reduced excitonic density matrix that is manifestly related to the spectroscopic picture of the photoexcitation process. This expression takes fully into account the environmental reorganization processes triggered by the two interactions with light. This is particularly important for slow environments and/or strong excitation-environment coupling. Within the exponential decomposition scheme, we demonstrate how our result can be recast as the hierarchy of equations of motion (HEOM) that explicitly and consistently includes the photoexcitation step. We analytically describe the environmental reorganization dynamics triggered by a delta-like excitation of a single chromophore and demonstrate how our HEOM, in appropriate limits, reduces to the Redfield equations comprising a pulsed photoexcitation and the nonequilibrium Forster theory. We also discuss the relation of our formalism to the combined Born-Markov-HEOM approaches in the case of excitation by thermal light.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA18-18022S" target="_blank" >GA18-18022S: Graphene-based Biomimetic Light-Harvesting Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

  • Volume of the periodical

    153

  • Issue of the periodical within the volume

    24

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    244122

  • UT code for WoS article

    000605582600005

  • EID of the result in the Scopus database

    2-s2.0-85099248219