The Parameterized Hardness of the k-Center Problem in Transportation Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422908" target="_blank" >RIV/00216208:11320/20:10422908 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Q7DrHtMS3Q" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Q7DrHtMS3Q</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-020-00683-w" target="_blank" >10.1007/s00453-020-00683-w</a>
Alternative languages
Result language
angličtina
Original language name
The Parameterized Hardness of the k-Center Problem in Transportation Networks
Original language description
In this paper we study the hardness of the ????-CENTER problem on inputs that model transportation networks. For the problem, a graph ????=(????,????) with edge lengths and an integer k are given and a center set ???? needs to be chosen such that |????|<=????. The aim is to minimize the maximum distance of any vertex in the graph to the closest center. This problem arises in many applications of logistics, and thus it is natural to consider inputs that model transportation networks. Such inputs are often assumed to be planar graphs, low doubling metrics, or bounded highway dimension graphs. For each of these models, parameterized approximation algorithms have been shown to exist. We complement these results by proving that the ????-CENTER problem is W[1]-hard on planar graphs of constant doubling dimension, where the parameter is the combination of the number of centers k, the highway dimension h, and the pathwidth p.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algorithmica
ISSN
0178-4617
e-ISSN
—
Volume of the periodical
82
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
1989-2005
UT code for WoS article
000515774300001
EID of the result in the Scopus database
2-s2.0-85078994342