Reduction principle for a certain class of kernel-type operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422935" target="_blank" >RIV/00216208:11320/20:10422935 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xVPLBSd.3K" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xVPLBSd.3K</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201800510" target="_blank" >10.1002/mana.201800510</a>
Alternative languages
Result language
angličtina
Original language name
Reduction principle for a certain class of kernel-type operators
Original language description
The classical Hardy-Littlewood inequality asserts that the integral of a product of two functions is always majorized by that of their non-increasing rearrangements. One of the pivotal applications of this result is the fact that the boundedness of an integral operator acting near zero is equivalent to the boundedness of the same operator restricted to the cone of positive non-increasing functions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
293
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
761-773
UT code for WoS article
000511519800001
EID of the result in the Scopus database
2-s2.0-85079124744