All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reduction principle for a certain class of kernel-type operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422935" target="_blank" >RIV/00216208:11320/20:10422935 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xVPLBSd.3K" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xVPLBSd.3K</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201800510" target="_blank" >10.1002/mana.201800510</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reduction principle for a certain class of kernel-type operators

  • Original language description

    The classical Hardy-Littlewood inequality asserts that the integral of a product of two functions is always majorized by that of their non-increasing rearrangements. One of the pivotal applications of this result is the fact that the boundedness of an integral operator acting near zero is equivalent to the boundedness of the same operator restricted to the cone of positive non-increasing functions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    293

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    761-773

  • UT code for WoS article

    000511519800001

  • EID of the result in the Scopus database

    2-s2.0-85079124744