On a Neumann problem for variational functionals of linear growth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422950" target="_blank" >RIV/00216208:11320/20:10422950 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sE9psW-453" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sE9psW-453</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2422/2036-2145.201802_005" target="_blank" >10.2422/2036-2145.201802_005</a>
Alternative languages
Result language
angličtina
Original language name
On a Neumann problem for variational functionals of linear growth
Original language description
We consider a Neumann problem for strictly convex variational functionals of linear growth. We establish the existence of minimisers among W1,1- functions provided that the domain under consideration is simply connected. Hence, in this situation, the relaxation of the functional to the space of functions of bounded variation, which has better compactness properties, is not necessary. Similar W1,1-regularity results for the corresponding Dirichlet problem are only known under rather restrictive convexity assumptions limiting its non-uniformity up to the borderline case of the minimal surface functional, whereas for the Neumann problem no such quantified version of strong convexity is required.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annali della Scuola Normale - Classe di Scienze
ISSN
0391-173X
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
XXI
Country of publishing house
IT - ITALY
Number of pages
43
Pages from-to
695-737
UT code for WoS article
000612618500019
EID of the result in the Scopus database
—