Antisocial online behavior detection using deep learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423220" target="_blank" >RIV/00216208:11320/20:10423220 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EdNDrUp~ng" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EdNDrUp~ng</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dss.2020.113362" target="_blank" >10.1016/j.dss.2020.113362</a>
Alternative languages
Result language
angličtina
Original language name
Antisocial online behavior detection using deep learning
Original language description
Digitalization shifts human communication to online platforms, which has many benefits but also builds up a space for antisocial online behavior (AOB) such as harassment, insult and other forms of hateful textual content. Online platforms have good reasons to monitor and moderate such content. The paper examines the viability of automatic content monitoring using deep machine learning and natural language processing (NLP). More specifically, we consolidate prior work in the field of antisocial online behavior detection and compare relevant approaches to recent NLP models in an empirical study. Covering important methodological advancements in NLP including bidirectional encoding, attention, hierarchical text representations, and pre-trained transformer-based language models, and extending previous approaches by introducing a pseudo-sentence hierarchical attention network, the paper provides a comprehensive summary of the state-of-affairs in NLP-based AOB detection, clarifies the detection accuracy that is attainable with today's technology, discusses whether this degree is sufficient for deploying deep learning-based text screening systems, and approaches the interpretability topic.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GX19-28231X" target="_blank" >GX19-28231X: DyMoDiF - Dynamic Models for the Digital Finance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Decision Support Systems
ISSN
0167-9236
e-ISSN
—
Volume of the periodical
138
Issue of the periodical within the volume
November 2020
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
113362
UT code for WoS article
000576663200004
EID of the result in the Scopus database
2-s2.0-85089579327