All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Antisocial online behavior detection using deep learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423220" target="_blank" >RIV/00216208:11320/20:10423220 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EdNDrUp~ng" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EdNDrUp~ng</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dss.2020.113362" target="_blank" >10.1016/j.dss.2020.113362</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Antisocial online behavior detection using deep learning

  • Original language description

    Digitalization shifts human communication to online platforms, which has many benefits but also builds up a space for antisocial online behavior (AOB) such as harassment, insult and other forms of hateful textual content. Online platforms have good reasons to monitor and moderate such content. The paper examines the viability of automatic content monitoring using deep machine learning and natural language processing (NLP). More specifically, we consolidate prior work in the field of antisocial online behavior detection and compare relevant approaches to recent NLP models in an empirical study. Covering important methodological advancements in NLP including bidirectional encoding, attention, hierarchical text representations, and pre-trained transformer-based language models, and extending previous approaches by introducing a pseudo-sentence hierarchical attention network, the paper provides a comprehensive summary of the state-of-affairs in NLP-based AOB detection, clarifies the detection accuracy that is attainable with today&apos;s technology, discusses whether this degree is sufficient for deploying deep learning-based text screening systems, and approaches the interpretability topic.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GX19-28231X" target="_blank" >GX19-28231X: DyMoDiF - Dynamic Models for the Digital Finance</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Decision Support Systems

  • ISSN

    0167-9236

  • e-ISSN

  • Volume of the periodical

    138

  • Issue of the periodical within the volume

    November 2020

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    113362

  • UT code for WoS article

    000576663200004

  • EID of the result in the Scopus database

    2-s2.0-85089579327