All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Migration of gap-opening planets in 3D stellar-irradiated accretion disks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423261" target="_blank" >RIV/00216208:11320/20:10423261 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-lf5QsQWaC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-lf5QsQWaC</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202038988" target="_blank" >10.1051/0004-6361/202038988</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Migration of gap-opening planets in 3D stellar-irradiated accretion disks

  • Original language description

    Context. The origin of giant planets at moderate separations similar or equal to 1-10 au is still not fully understood because numerical studies of Type II migration in protoplanetary disks often predict a decay of the semi-major axis that is too fast. According to recent 2D simulations, inward migration of a gap-opening planet can be slowed down or even reversed if the outer gap edge becomes heated by irradiation from the central star, and puffed up.Aims. Here, we study how stellar irradiation reduces the disk-driven torque and affects migration in more realistic 3D disks.Methods. Using 3D hydrodynamic simulations with radiation transfer, we investigated the static torque acting on a single gap-opening planet embedded in a passively heated accretion disk.Results. Our simulations confirm that a temperature inversion is established at the irradiated outer gap edge and the local increase of the scale height reduces the magnitude of the negative outer Lindblad torque. However, the temperature excess is smaller than assumed in 2D simulations and the torque reduction only becomes prominent for specific parameters. For the viscosity alpha = 10(-3), the total torque is reduced for planetary masses ranging from 0.1 to 0.7 Jupiter mass, with the strongest reduction being by a factor of - 0.17 (implying outward migration) for a Saturn-mass planet. For a Jupiter-mass planet, the torque reduction becomes stronger with increasing alpha (the torque is halved when alpha = 5 x 10(-3)).Conclusions. We conclude that planets that open moderately wide and deep gaps are subject to the largest torque modifications and their Type II migration can be stalled due to gap edge illumination. We then argue that the torque reduction can help to stabilize the orbits of giant planets forming at greater than or similar to 1 au.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy &amp; Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

  • Volume of the periodical

    642

  • Issue of the periodical within the volume

    říjen

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    17

  • Pages from-to

    A219

  • UT code for WoS article

    000586584100002

  • EID of the result in the Scopus database

    2-s2.0-85094894845