Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423810" target="_blank" >RIV/00216208:11320/20:10423810 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UnolN1o_R7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UnolN1o_R7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.0c02083" target="_blank" >10.1021/acsami.0c02083</a>
Alternative languages
Result language
angličtina
Original language name
Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditions
Original language description
Comprehensive understanding of the catalyst corrosion dynamics is a prerequisite for the development of an efficient cathode catalyst in proton-exchange membrane fuel cells. To reach this aim, the behavior of fuel cell catalysts must be investigated directly under reaction conditions. Herein, we applied a strategic combination of in situ/online techniques: in situ electrochemical atomic force microscopy, in situ grazing incidence small angle X-ray scattering, and electrochemical scanning flow cell with online detection by inductively coupled plasma mass spectrometry. This combination of techniques allows in-depth investigation of the potential-dependent surface restructuring of a PtNi model thin film catalyst during potentiodynamic cycling in an aqueous acidic electrolyte. The study reveals a clear correlation between the upper potential limit and structural behavior of the PtNi catalyst, namely, its dealloying and coarsening. The results show that at 0.6 and 1.0 V-RHE upper potentials, the PtNi catalyst essentially preserves its structure during the entire cycling procedure. The crucial changes in the morphology of PtNi layers are found to occur at 1.3 and 1.5 V-RHE cycling potentials. Strong dealloying at the early stage of cycling is substituted with strong coarsening of catalyst particles at the later stage. The coarsening at the later stage of cycling is assigned to the electrochemical Ostwald ripening process.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACS Applied Materials & Interfaces
ISSN
1944-8244
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
15
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
17602-17610
UT code for WoS article
000526330900045
EID of the result in the Scopus database
2-s2.0-85083543994