Kinetic and mechanistic study of CO oxidation over nanocomposite Cu-Fe-Al oxide catalysts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423829" target="_blank" >RIV/00216208:11320/20:10423829 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZjphLhgQg9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZjphLhgQg9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cctc.202000852" target="_blank" >10.1002/cctc.202000852</a>
Alternative languages
Result language
angličtina
Original language name
Kinetic and mechanistic study of CO oxidation over nanocomposite Cu-Fe-Al oxide catalysts
Original language description
The oxidation of CO has been studied over Fe-Al and Cu-Fe-Al oxide nanocomposite catalysts prepared by melting of copper, iron, and aluminum nitrates. It was shown that the addition of copper significantly increases the catalytic activity of the Fe-Al nanocomposites. The catalysts were characterized by low-temperature nitrogen adsorption, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). It was found that the catalysts contain Fe(2)O(3)with the hematite structure modified by aluminum. Copper in the three-component catalyst is in the Cu(2+)state, forming CuO and CuFeO(x)clusters on the catalyst surface. An increase in the copper content leads to the formation of a Cu(x)Al(y)Fe(3-x-y)O(4)spinel phase.In situXPS study showed that a treatment of the catalysts in a CO flow leads to the reduction of both copper and iron cations into the metallic state. In contrast, a treatment in a CO/O(2)flow leads only to partial reduction of Cu(2+)to Cu1+, while Fe(3+)are not reduced. The tests of catalytic activity performed in a flow fixed bed reactor using a CO pulse technique showed that the light-off temperature in the oxidation of CO over the Cu-Fe-Al nanocomposite catalysts depends on the copper content. The minimal light-off temperature was achieved over the catalyst containing 5 wt% CuO. In addition, we performed kinetic measurements in a differential reactor and obtained the activation energy and the reaction orders with respect to the reactants. The reaction mechanism of the catalytic oxidation of CO and the origin of active species are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/LM2018116" target="_blank" >LM2018116: Surface Physics Laboratory - Materials Science Beamline</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ChemCatChem
ISSN
1867-3880
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
19
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
4911-4921
UT code for WoS article
000567671800001
EID of the result in the Scopus database
2-s2.0-85090060989