All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Data-to-Text Generation with Iterative Text Editing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424454" target="_blank" >RIV/00216208:11320/20:10424454 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aclweb.org/anthology/2020.inlg-1.9/" target="_blank" >https://www.aclweb.org/anthology/2020.inlg-1.9/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Data-to-Text Generation with Iterative Text Editing

  • Original language description

    We present a novel approach to data-to-text generation based on iterative text editing. Our approach maximizes the completeness and semantic accuracy of the output text while leveraging the abilities of recent pretrained models for text editing (LaserTagger) and language modelling (GPT-2) to improve the text fluency. To this end, we first transform data to text using trivial per-item lexicalizations, iteratively improving the resulting text by a neural model trained for the sentence fusion task. The model output is filtered by a simple heuristic and reranked with an off-the-shelf pretrained language model. We evaluate our approach on two major data-to-text datasets (WebNLG, Cleaned E2E) and analyze its caveats and benefits. Furthermore, we show that our formulation of data-to-text generation opens up the possibility for zero-shot domain adaptation using a general-domain dataset for sentence fusion.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 13th International Conference on Natural Language Generation (INLG 2020)

  • ISBN

    978-1-952148-54-5

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    60-67

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburgh, PA, USA

  • Event location

    Online

  • Event date

    Dec 15, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article