All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

One Model, Many Languages: Meta-learning for Multilingual Text-to-Speech

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424483" target="_blank" >RIV/00216208:11320/20:10424483 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.isca-speech.org/archive/Interspeech_2020/abstracts/2679.html" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2020/abstracts/2679.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2020-2679" target="_blank" >10.21437/Interspeech.2020-2679</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    One Model, Many Languages: Meta-learning for Multilingual Text-to-Speech

  • Original language description

    We introduce an approach to multilingual speech synthesis which uses the meta-learning concept of contextual parameter generation and produces natural-sounding multilingual speech using more languages and less training data than previous approaches. Our model is based on Tacotron 2 with a fully convolutional input text encoder whose weights are predicted by a separate parameter generator network. To boost voice cloning, the model uses an adversarial speaker classifier with a gradient reversal layer that removes speaker-specific information from the encoder. We arranged two experiments to compare our model with baselines using various levels of cross-lingual parameter sharing, in order to evaluate: (1) stability and performance when training on low amounts of data, (2) pronunciation accuracy and voice quality of code-switching synthesis. For training, we used the CSS10 dataset and our new small dataset based on Common Voice recordings in five languages. Our model is shown to effectively share informati

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 21st Annual Conference of the International Speech Communication Association

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    2972-2976

  • Publisher name

    International Speech Communication Association

  • Place of publication

    Baixas, France

  • Event location

    Online

  • Event date

    Oct 25, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article