Electron Small Polaron and Magnetic Interactions Direct Anisotropic Growth of Silicon-Doped Hematite Nanocrystals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10425671" target="_blank" >RIV/00216208:11320/20:10425671 - isvavai.cz</a>
Alternative codes found
RIV/68378271:_____/20:00538296 RIV/61989592:15310/20:73603901
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yZX3-uOVYa" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yZX3-uOVYa</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.cgd.0c00496" target="_blank" >10.1021/acs.cgd.0c00496</a>
Alternative languages
Result language
angličtina
Original language name
Electron Small Polaron and Magnetic Interactions Direct Anisotropic Growth of Silicon-Doped Hematite Nanocrystals
Original language description
Hematite (alpha-Fe2O3) is a promising and Earth-abundant material for solar fuel production, and Si-doping has been employed as a general strategy to improve its performance. However, an atomistic description that reconciles the modifications that Si-doping induces on the morphology, crystalline lattice, and electronic and magnetic properties of alpha-Fe2O3 has remained elusive. Here we report on the role of electron small polarons in driving the morphological transition from nearly rounded-shaped to nanowire nanocrystals in Si-doped hematite alpha-Fe2O3. Electron small polaron formation is evidenced by the formation of Fe2+ and the increase of FeO6 distortion at increasing Si content. Local analysis via pair distribution function highlights an unreported crossover from small to large polarons, which affects the correlation length of the polaronic distortion from short to average scales. Ferromagnetic double exchange interactions between Fe2+/Fe3+ species are found to be the driving force of the crossover, constraining the chaining of chemical bonds along the [110] crystallographic direction. This promotes the increase in the reticular density of Fe atoms along the hematite basal plane only, which boosts the anisotropic growth of nanocrystals with more extended [110] facets. Our results show that magnetic and electronic interactions drive preferential crystallographic growth in Si-doped alpha-Fe2O3, thus providing new insights for the nanoscale structural design of efficient solar fuel devices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
—
Continuities
—
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Crystal Growth and Design
ISSN
1528-7483
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
4719-4730
UT code for WoS article
000546699900054
EID of the result in the Scopus database
2-s2.0-85090090786