Estimating word-level quality of statistical machine translation output using monolingual information alone
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426930" target="_blank" >RIV/00216208:11320/20:10426930 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/natural-language-engineering/article/estimating-wordlevel-quality-of-statistical-machine-translation-output-using-monolingual-information-alone/CC59FF0C07E859AAA01CC30CF7BA9326" target="_blank" >https://www.cambridge.org/core/journals/natural-language-engineering/article/estimating-wordlevel-quality-of-statistical-machine-translation-output-using-monolingual-information-alone/CC59FF0C07E859AAA01CC30CF7BA9326</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Estimating word-level quality of statistical machine translation output using monolingual information alone
Original language description
Various studies show that statistical machine translation (SMT) systems suffer from fluency errors, especially in the form of grammatical errors and errors related to idiomatic word choices. In this study, we investigate the effectiveness of using monolingual information contained in the machine-translated text to estimate word-level quality of SMT output. We propose a recurrent neural network architecture which uses morpho-syntactic features and word embeddings as word representations within surface and syntactic n-grams. We test the proposed method on two language pairs and for two tasks, namely detecting fluency errors and predicting overall post-editing effort. Our results show that this method is effective for capturing all types of fluency errors at once. Moreover, on the task of predicting post-editing effort, while solely relying on monolingual information, it achieves on-par results with the state-of-the-art quality estimation systems which use both bilingual and monolingual information.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů