All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards the Conversion of National Corpus of Polish to Universal Dependencies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426933" target="_blank" >RIV/00216208:11320/20:10426933 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aclweb.org/anthology/2020.lrec-1.653" target="_blank" >https://www.aclweb.org/anthology/2020.lrec-1.653</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards the Conversion of National Corpus of Polish to Universal Dependencies

  • Original language description

    The research presented in this paper aims at enriching the manually morphosyntactically annotated part of National Corpus of Polish (NKJP1M) with a syntactic layer, i.e. dependency trees of sentences, and at converting both dependency trees and morphosyntactic annotations of particular tokens to Universal Dependencies. The dependency layer is built using a semi-automatic annotation procedure. The sentences from NKJP1M are first parsed with a dependency parser trained on Polish Dependency Bank, i.e. the largest bank of Polish dependency trees. The predicted dependency trees and the morphosyntactic annotations of tokens are then automatically converted into UD dependency graphs. NKJP1M sentences are an essential part of Polish Dependency Bank, we thus replace some automatically predicted dependency trees with their manually annotated equivalents. The final dependency treebank consists of 86K trees (including 15K gold-standard trees). A natural language pre-processing model trained on the enlarged set of (possibly noisy) dependency trees outperforms a model trained on a smaller set of the gold-standard trees in predicting part-of-speech tags, morphological features, lemmata, and labelled dependency trees

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů