Transfer learning and subword sampling for asymmetric-resource one-to-many neural translation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426959" target="_blank" >RIV/00216208:11320/20:10426959 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10590-020-09253-x" target="_blank" >https://doi.org/10.1007/s10590-020-09253-x</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Transfer learning and subword sampling for asymmetric-resource one-to-many neural translation
Original language description
There are several approaches for improving neural machine translation for low-resource languages: monolingual data can be exploited via pretraining or data augmentation; parallel corpora on related language pairs can be used via parameter sharing or transfer learning in multilingual models; subword segmentation and regularization techniques can be applied to ensure high coverage of the vocabulary. We review these approaches in the context of an asymmetric-resource one-to-many translation task, in which the pair of target languages are related, with one being a very low-resource and the other a higher-resource language. We test various methods on three artificially restricted translation tasks—English to Estonian (low-resource) and Finnish (high-resource), English to Slovak and Czech, English to Danish and Swedish—and one real-world task, Norwegian to North Sámi and Finnish. The experiments show positive effects especially for scheduled multi-task learning, denoising autoencoder, and subword sampling.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů