All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Loop Amplitudes and Quantum Homotopy Algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10438514" target="_blank" >RIV/00216208:11320/20:10438514 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c4qE.AWmMp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c4qE.AWmMp</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/JHEP07(2020)003" target="_blank" >10.1007/JHEP07(2020)003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Loop Amplitudes and Quantum Homotopy Algebras

  • Original language description

    We derive a recursion relation for loop-level scattering amplitudes of La-grangian field theories that generalises the tree-level Berends-Giele recursion relation in Yang-Mills theory. The origin of this recursion relation is the homological perturbation lemma, which allows us to compute scattering amplitudes from minimal models of quantum homotopy algebras in a recursive way. As an application of our techniques, we give an alternative proof of the relation between non-planar and planar colour-stripped scattering amplitudes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of High Energy Physics [online]

  • ISSN

    1029-8479

  • e-ISSN

  • Volume of the periodical

    Neuveden

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    003

  • UT code for WoS article

    000547007800002

  • EID of the result in the Scopus database

    2-s2.0-85087305677