A New Convexity-Based Inequality, Characterization of Probability Distributions, and Some Free-of-Distribution Tests
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10456348" target="_blank" >RIV/00216208:11320/20:10456348 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jtkO7alPnS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jtkO7alPnS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-020-05062-y" target="_blank" >10.1007/s10958-020-05062-y</a>
Alternative languages
Result language
angličtina
Original language name
A New Convexity-Based Inequality, Characterization of Probability Distributions, and Some Free-of-Distribution Tests
Original language description
A goal of the paper is to prove new inequalities connecting some functionals of probability distribution functions. These inequalities are based on the strict convexity of functions used in the definition of the functionals. The starting point is the paper "Cramér-von Mises distance: probabilistic interpretation, confidence intervals and neighborhood of model validation" by Ludwig Baringhaus and Norbert Henze. The present paper provides a generalization of inequality obtained in probabilistic interpretation of the Cramér-von Mises distance. If the equality holds there, then a chance to give characterization of some probability distribution functions appears. Considering this fact and a special character of the functional, it is possible to create a class of free-of-distribution two sample tests.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA16-03708S" target="_blank" >GA16-03708S: Spatial geometrical statistics of random sets in Euclidean spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Sciences [online]
ISSN
1573-8795
e-ISSN
—
Volume of the periodical
251
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
38-45
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85092528601