SpotifyGraph: Visualisation of User's Preferences in Music
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10422766" target="_blank" >RIV/00216208:11320/21:10422766 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-67835-7_32" target="_blank" >https://doi.org/10.1007/978-3-030-67835-7_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-67835-7_32" target="_blank" >10.1007/978-3-030-67835-7_32</a>
Alternative languages
Result language
angličtina
Original language name
SpotifyGraph: Visualisation of User's Preferences in Music
Original language description
Many music streaming portals recommend lists of songs to the users. These recommendations are often results of black-box algorithms (from the user's perspective). However, irrelevant recommendations without the proper justification may considerably hinder the user's trust. Moreover, user profiles in music streaming services tend to be very large, consisting of hundreds of artists and thousands of tracks. So, not only the recommendation procedure details are hidden for the user, but he/she often lacks a sufficient knowledge about the source data the recommendations are derived from. In order to cope with these challenges, we propose SpotifyGraph application. The application aims on a comprehensible visualization of the relations within the Spotify user's profile and therefore improve understandability of provided recommendations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ19-22071Y" target="_blank" >GJ19-22071Y: Flexible models for known-item search in large video collections</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MultiMedia Modeling
ISBN
978-3-030-67835-7
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
379-384
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Prague, Czech Republic
Event date
Jun 22, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—