GLMM Based Segmentation of Czech Households Using the EU-SILC Database
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10431071" target="_blank" >RIV/00216208:11320/21:10431071 - isvavai.cz</a>
Result on the web
<a href="https://mme2021.v2.czu.cz/en/r-16791-news-mme-2021/proceedings-of-the-39-th-international-conference-on-mme-202.html" target="_blank" >https://mme2021.v2.czu.cz/en/r-16791-news-mme-2021/proceedings-of-the-39-th-international-conference-on-mme-202.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
GLMM Based Segmentation of Czech Households Using the EU-SILC Database
Original language description
The EU-SILC database contains annually gathered rotating-panel data on a household level covering indicators of monetary poverty, severe material deprivation or low work household intensity. Data are obtained via questionnaires leading to outcome variables of diverse nature: numeric, binary, ordinal or general categorical. In our previous contribution to MME 2020 we presented a clustering method for such a type of data. The used thresholding approach of latent numeric counterparts of binary and ordinal outcomes suffered from slow convergence and unclear interpretation of resulting estimates. Hence we propose an alternative approach which again exploits a Bayesian variant of the model based clustering (MBC). Nevertheless, the underlying models are all of a generalized linear mixed model (GLMM) nature: (proportional odds) logit model for (ordinal) or binary indicators, multinomial logit model for general categorical outcomes and a standard linear mixed model for numeric outcome. Czech households interviewed within the EU-SILC project between 2005 and 2018 are then divided into several groups of similar evolution of income, housing costs, self-evaluations and other indicators.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA19-00015S" target="_blank" >GA19-00015S: Identification of Poverty and Social Exclusion Temporal Patterns of Households Based on Multivariate Mixed Type Panel Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 39th International Conference on Mathematical Methods in Economics
ISBN
978-80-213-3126-6
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
505-510
Publisher name
Česká zemědělská univerzita v Praze
Place of publication
Praha, Česká republika
Event location
Praha, Česká republika
Event date
Sep 8, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000936369700084