All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GLMM Based Segmentation of Czech Households Using the EU-SILC Database

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10431071" target="_blank" >RIV/00216208:11320/21:10431071 - isvavai.cz</a>

  • Result on the web

    <a href="https://mme2021.v2.czu.cz/en/r-16791-news-mme-2021/proceedings-of-the-39-th-international-conference-on-mme-202.html" target="_blank" >https://mme2021.v2.czu.cz/en/r-16791-news-mme-2021/proceedings-of-the-39-th-international-conference-on-mme-202.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    GLMM Based Segmentation of Czech Households Using the EU-SILC Database

  • Original language description

    The EU-SILC database contains annually gathered rotating-panel data on a household level covering indicators of monetary poverty, severe material deprivation or low work household intensity. Data are obtained via questionnaires leading to outcome variables of diverse nature: numeric, binary, ordinal or general categorical. In our previous contribution to MME 2020 we presented a clustering method for such a type of data. The used thresholding approach of latent numeric counterparts of binary and ordinal outcomes suffered from slow convergence and unclear interpretation of resulting estimates. Hence we propose an alternative approach which again exploits a Bayesian variant of the model based clustering (MBC). Nevertheless, the underlying models are all of a generalized linear mixed model (GLMM) nature: (proportional odds) logit model for (ordinal) or binary indicators, multinomial logit model for general categorical outcomes and a standard linear mixed model for numeric outcome. Czech households interviewed within the EU-SILC project between 2005 and 2018 are then divided into several groups of similar evolution of income, housing costs, self-evaluations and other indicators.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA19-00015S" target="_blank" >GA19-00015S: Identification of Poverty and Social Exclusion Temporal Patterns of Households Based on Multivariate Mixed Type Panel Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 39th International Conference on Mathematical Methods in Economics

  • ISBN

    978-80-213-3126-6

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    505-510

  • Publisher name

    Česká zemědělská univerzita v Praze

  • Place of publication

    Praha, Česká republika

  • Event location

    Praha, Česká republika

  • Event date

    Sep 8, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000936369700084