Omnibus test for covariate effects in conditional copula models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435376" target="_blank" >RIV/00216208:11320/21:10435376 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gar6w2_~8v" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gar6w2_~8v</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmva.2021.104804" target="_blank" >10.1016/j.jmva.2021.104804</a>
Alternative languages
Result language
angličtina
Original language name
Omnibus test for covariate effects in conditional copula models
Original language description
Conditional copulas describe the conditional dependence and the influence that covariates have on the dependence structure between two (or more) variables. Of interest is to test the null hypothesis that the covariates have a specific effect. This paper proposes an omnibus test for testing the null hypothesis of a specified effect of the covariates. The test statistic is designed for having power against many alternatives, and can be used to test for a variety of covariate effects (no effects, linear effects, partial effects, etc.). A special case is the testing problem that the covariates do not affect the dependence structure. In this semiparametric framework the marginal distribution functions are estimated using nonparametric kernel techniques and the parametric dependence model is estimated using maximum likelihood estimation. We establish the asymptotic distribution of the test statistic under the null hypothesis, and evaluate the finite-sample performance of the test via a simulation study, which also includes comparisons with alternative tests. A real data analysis illustrates the practical use of the test. (C) 2021 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA19-00015S" target="_blank" >GA19-00015S: Identification of Poverty and Social Exclusion Temporal Patterns of Households Based on Multivariate Mixed Type Panel Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Multivariate Analysis
ISSN
0047-259X
e-ISSN
—
Volume of the periodical
186
Issue of the periodical within the volume
November
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
104804
UT code for WoS article
000702870700016
EID of the result in the Scopus database
2-s2.0-85115789014