All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Depth-Based Inference in Elliptical Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435406" target="_blank" >RIV/00216208:11320/21:10435406 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-69944-4_14" target="_blank" >https://doi.org/10.1007/978-3-030-69944-4_14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-69944-4_14" target="_blank" >10.1007/978-3-030-69944-4_14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Depth-Based Inference in Elliptical Models

  • Original language description

    Elliptical models are the most important family of multivariate probability distributions. We explore the properties of these distributions with respect to their halfspace depth and their illumination. The densities of elliptically symmetric distributions are expressed only in terms of the depth, the illumination, and a univariate function that can be estimated from the data. These observations set the ground for robust and nonparametric inference for (nearly) elliptical models based on the use of depth and illumination.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometric aspects of mathematical statistics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Studies in Classification, Data Analysis, and Knowledge Organization

  • ISBN

    978-3-030-69943-7

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    129-137

  • Publisher name

    Springer Science and Business Media

  • Place of publication

    Německo

  • Event location

    Cassino

  • Event date

    Sep 11, 2019

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article