On the dynamic slip boundary condition for Navier-Stokes-like problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435825" target="_blank" >RIV/00216208:11320/21:10435825 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.OnDOpUka2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.OnDOpUka2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202521500470" target="_blank" >10.1142/S0218202521500470</a>
Alternative languages
Result language
angličtina
Original language name
On the dynamic slip boundary condition for Navier-Stokes-like problems
Original language description
The choice of the boundary conditions in mechanical problems has to reflect the interaction of the considered material with the surface. Still the assumption of the no-slip condition is preferred in order to avoid boundary terms in the analysis and slipping effects are usually overlooked. Besides the "static slip models", there are phenomena that are not accurately described by them, e.g. at the moment when the slip changes rapidly, the wall shear stress and the slip can exhibit a sudden overshoot and subsequent relaxation. When these effects become significant, the so-called dynamic slip phenomenon occurs. We develop a mathematical analysis of Navier-Stokes-like problems with a dynamic slip boundary condition, which requires a proper generalization of the Gelfand triplet and the corresponding function space setting.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-11027X" target="_blank" >GX20-11027X: Mathematical analysis of partial differential equations describing far-from-equilibrium open systems in continuum thermodynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
11
Country of publishing house
SG - SINGAPORE
Number of pages
48
Pages from-to
2165-2212
UT code for WoS article
000722309400001
EID of the result in the Scopus database
2-s2.0-85121230073