All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

AUTOCOMPACT OBJECTS OF AB5 CATEGORIES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436575" target="_blank" >RIV/00216208:11320/21:10436575 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/21:00354975

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mvq6oeQGKE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mvq6oeQGKE</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    AUTOCOMPACT OBJECTS OF AB5 CATEGORIES

  • Original language description

    The aim of the paper is to describe autocompact objects in Ab5-categories, i.e. objects in cocomplete abelian categories with exactness preserving filtered colimits, whose covariant Hom-functor commutes with copowers of the object itself. A characterization of non-auto compact object is given, a general criterion of autocompactness of an object via the structure of its endomorphism ring is presented and a criterion of autocompactness of products is proven.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory and Applications of Categories

  • ISSN

    1201-561X

  • e-ISSN

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    37

  • Country of publishing house

    CA - CANADA

  • Number of pages

    17

  • Pages from-to

    979-995

  • UT code for WoS article

    000705652800001

  • EID of the result in the Scopus database