AUTOCOMPACT OBJECTS OF AB5 CATEGORIES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436575" target="_blank" >RIV/00216208:11320/21:10436575 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/21:00354975
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mvq6oeQGKE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mvq6oeQGKE</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
AUTOCOMPACT OBJECTS OF AB5 CATEGORIES
Original language description
The aim of the paper is to describe autocompact objects in Ab5-categories, i.e. objects in cocomplete abelian categories with exactness preserving filtered colimits, whose covariant Hom-functor commutes with copowers of the object itself. A characterization of non-auto compact object is given, a general criterion of autocompactness of an object via the structure of its endomorphism ring is presented and a criterion of autocompactness of products is proven.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
37
Country of publishing house
CA - CANADA
Number of pages
17
Pages from-to
979-995
UT code for WoS article
000705652800001
EID of the result in the Scopus database
—