All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On flat generators and Matlis duality for quasicoherent sheaves

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436782" target="_blank" >RIV/00216208:11320/21:10436782 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LeEV59TzX_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LeEV59TzX_</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.12398" target="_blank" >10.1112/blms.12398</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On flat generators and Matlis duality for quasicoherent sheaves

  • Original language description

    We show that for a quasicompact quasiseparated schemeX, the following assertions are equivalent: (1) the categoryQCoh(X)of all quasicoherent sheaves onXhas a flat generator; (2) for every injective objectEofQCoh(X), the internal hom functor intoEis exact; (3) the schemeXis semiseparated.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    53

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    63-74

  • UT code for WoS article

    000556033800001

  • EID of the result in the Scopus database

    2-s2.0-85089017083