Finitely Tractable Promise Constraint Satisfaction Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436806" target="_blank" >RIV/00216208:11320/21:10436806 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.MFCS.2021.11" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2021.11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.11" target="_blank" >10.4230/LIPIcs.MFCS.2021.11</a>
Alternative languages
Result language
angličtina
Original language name
Finitely Tractable Promise Constraint Satisfaction Problems
Original language description
The Promise Constraint Satisfaction Problem (PCSP) is a generalization of the Constraint Satisfaction Problem (CSP) that includes approximation variants of satisfiability and graph coloring problems. Barto [LICS '19] has shown that a specific PCSP, the problem to find a valid Not-All-Equal solution to a 1-in-3-SAT instance, is not finitely tractable in that it can be solved by a trivial reduction to a tractable CSP, but such a CSP is necessarily over an infinite domain (unless P=NP). We initiate a systematic study of this phenomenon by giving a general necessary condition for finite tractability and characterizing finite tractability within a class of templates - the "basic"tractable cases in the dichotomy theorem for symmetric Boolean PCSPs allowing negations by Brakensiek and Guruswami [SODA'18]. (C) Kristina Asimi and Libor Barto; licensed under Creative Commons License CC-BY 4.0 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-201-3
ISSN
1868-8969
e-ISSN
—
Number of pages
6
Pages from-to
11-16
Publisher name
Schloss Dagstuhl
Place of publication
Německo
Event location
Estonsko
Event date
Aug 23, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—