All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Finitely Tractable Promise Constraint Satisfaction Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436806" target="_blank" >RIV/00216208:11320/21:10436806 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.MFCS.2021.11" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2021.11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.11" target="_blank" >10.4230/LIPIcs.MFCS.2021.11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Finitely Tractable Promise Constraint Satisfaction Problems

  • Original language description

    The Promise Constraint Satisfaction Problem (PCSP) is a generalization of the Constraint Satisfaction Problem (CSP) that includes approximation variants of satisfiability and graph coloring problems. Barto [LICS &apos;19] has shown that a specific PCSP, the problem to find a valid Not-All-Equal solution to a 1-in-3-SAT instance, is not finitely tractable in that it can be solved by a trivial reduction to a tractable CSP, but such a CSP is necessarily over an infinite domain (unless P=NP). We initiate a systematic study of this phenomenon by giving a general necessary condition for finite tractability and characterizing finite tractability within a class of templates - the &quot;basic&quot;tractable cases in the dichotomy theorem for symmetric Boolean PCSPs allowing negations by Brakensiek and Guruswami [SODA&apos;18]. (C) Kristina Asimi and Libor Barto; licensed under Creative Commons License CC-BY 4.0 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-201-3

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    11-16

  • Publisher name

    Schloss Dagstuhl

  • Place of publication

    Německo

  • Event location

    Estonsko

  • Event date

    Aug 23, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article