All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inverse Free Universum Twin Support Vector Machine

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437045" target="_blank" >RIV/00216208:11320/21:10437045 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-92121-7_21" target="_blank" >https://doi.org/10.1007/978-3-030-92121-7_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-92121-7_21" target="_blank" >10.1007/978-3-030-92121-7_21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inverse Free Universum Twin Support Vector Machine

  • Original language description

    Universum twin support vector machine (U -TSVM) is an efficient method for binary classification problems. In this paper, we improve the U -TSVM algorithm and propose an improved Universum twin bounded support vector machine (named as IUTBSVM). Indeed, by introducing a different Lagrangian function for the primal problems, we obtain new dual formulations so that we do not need to compute inverse matrices. Also to reduce the computational time of the proposed method, we suggest smaller size of the rectangular kernel matrices than the other methods. Numerical experiments on several UCI benchmark data sets indicate that the IUTBSVM is more efficient than the other three algorithms, namely U -SVM, TSVM, and U -TSVM in sense of the classification accuracy. (C) 2021, Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

    <a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Learning and Intelligent Optimization

  • ISBN

    978-3-030-92120-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    252-264

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

    Cham, Switzerland

  • Event location

    Athens

  • Event date

    Jun 20, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article