Sensitivity Gaussian packets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437067" target="_blank" >RIV/00216208:11320/21:10437067 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_Ol.rBNmv1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_Ol.rBNmv1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11200-021-0931-x" target="_blank" >10.1007/s11200-021-0931-x</a>
Alternative languages
Result language
angličtina
Original language name
Sensitivity Gaussian packets
Original language description
Perturbations of elastic moduli and density can be decomposed into Gabor functions. The wave field scattered by the perturbations is then composed of waves scattered by the individual Gabor functions. The scattered waves can be estimated using the first-order Born approximation with the paraxial ray approximation. For a particular source generating a short-duration broad-band incident wave field with a smooth frequency spectrum, each Gabor function generates at most a few scattered sensitivity Gaussian packets propagating in determined directions. Each of these scattered Gaussian packets is sensitive to just a single linear combination of the perturbations of elastic moduli and density corresponding to the Gabor function. This information about the Gabor function is lost if the scattered sensitivity Gaussian packet does not fall into the aperture covered by the receivers and into the recording frequency band. We illustrate this loss of information using the difference between the 2-D Marmousi model and the corresponding smooth velocity model. We decompose the difference into Gabor functions. For each of the 240 point shots, we consider 96 receivers. For each shot and each Gabor function, we trace the central ray of each sensitivity Gaussian packet. If a sensitivity Gaussian packet arrives to the receiver array within the recording time interval and frequency band, the recorded wave field contains information on the corresponding Gabor function. We then decompose the difference into the part influencing some recorded seismograms, and the part on which we recorded no information and which thus cannot be recovered from the reflection experiment.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10500 - Earth and related environmental sciences
Result continuities
Project
<a href="/en/project/GC21-15272J" target="_blank" >GC21-15272J: Asymptotic full-waveform inversion of seismic data in complex media</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Geophysica et Geodaetica
ISSN
0039-3169
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
3-4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
9
Pages from-to
296-304
UT code for WoS article
000718763100001
EID of the result in the Scopus database
2-s2.0-85119087410