All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sensitivity Gaussian packets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437067" target="_blank" >RIV/00216208:11320/21:10437067 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_Ol.rBNmv1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_Ol.rBNmv1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11200-021-0931-x" target="_blank" >10.1007/s11200-021-0931-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sensitivity Gaussian packets

  • Original language description

    Perturbations of elastic moduli and density can be decomposed into Gabor functions. The wave field scattered by the perturbations is then composed of waves scattered by the individual Gabor functions. The scattered waves can be estimated using the first-order Born approximation with the paraxial ray approximation. For a particular source generating a short-duration broad-band incident wave field with a smooth frequency spectrum, each Gabor function generates at most a few scattered sensitivity Gaussian packets propagating in determined directions. Each of these scattered Gaussian packets is sensitive to just a single linear combination of the perturbations of elastic moduli and density corresponding to the Gabor function. This information about the Gabor function is lost if the scattered sensitivity Gaussian packet does not fall into the aperture covered by the receivers and into the recording frequency band. We illustrate this loss of information using the difference between the 2-D Marmousi model and the corresponding smooth velocity model. We decompose the difference into Gabor functions. For each of the 240 point shots, we consider 96 receivers. For each shot and each Gabor function, we trace the central ray of each sensitivity Gaussian packet. If a sensitivity Gaussian packet arrives to the receiver array within the recording time interval and frequency band, the recorded wave field contains information on the corresponding Gabor function. We then decompose the difference into the part influencing some recorded seismograms, and the part on which we recorded no information and which thus cannot be recovered from the reflection experiment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

    <a href="/en/project/GC21-15272J" target="_blank" >GC21-15272J: Asymptotic full-waveform inversion of seismic data in complex media</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Geophysica et Geodaetica

  • ISSN

    0039-3169

  • e-ISSN

  • Volume of the periodical

    65

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    9

  • Pages from-to

    296-304

  • UT code for WoS article

    000718763100001

  • EID of the result in the Scopus database

    2-s2.0-85119087410