On the Homomorphism Order of Oriented Paths and Trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437127" target="_blank" >RIV/00216208:11320/21:10437127 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/https://doi.org/10.1007/978-3-030-83823-2_118" target="_blank" >https://doi.org/https://doi.org/10.1007/978-3-030-83823-2_118</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-83823-2_118" target="_blank" >10.1007/978-3-030-83823-2_118</a>
Alternative languages
Result language
angličtina
Original language name
On the Homomorphism Order of Oriented Paths and Trees
Original language description
A partial order is universal if it contains every countable partial order as a suborder. In 2017, Fiala, Hubička, Long and Nešetřil showed that every interval in the homomorphism order of graphs is universal, with the only exception being the trivial gap [K1,K2]. We consider the homomorphism order restricted to the class of oriented paths and trees. We show that every interval between two oriented paths or oriented trees of height at least 4 is universal. The exceptional intervals coincide for oriented paths and trees and are contained in the class of oriented paths of height at most 3, which forms a chain.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA21-10775S" target="_blank" >GA21-10775S: Ramsey theory in the context of group theory, model theory and topological dynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Extended Abstracts EuroComb 2021
ISBN
978-3-030-83823-2
ISSN
2297-0215
e-ISSN
2297-024X
Number of pages
6
Pages from-to
739-744
Publisher name
Birkhäuser, Cham
Place of publication
Switzerland
Event location
Barcelona
Event date
Sep 6, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—